论文标题

通过深度加强学习,有效的信息扩散在随着时变图中

Efficient Information Diffusion in Time-Varying Graphs through Deep Reinforcement Learning

论文作者

Mendonça, Matheus R. F., Barreto, André M. S., Ziviani, Artur

论文摘要

通过许多真实的应用程序,网络播种以进行有效的信息扩散跨时变图(TVG)是一项艰巨的任务。有几种方法可以建模这种时空影响最大化问题,但最终目标是确定节点开始扩散过程的最佳时刻。在这种情况下,我们提出了时空影响最大化〜(STIM),该模型是通过增强学习和图形嵌入一组人工TVG上的模型,能够学习每个节点的时间行为和连通性模式,从而可以预测最佳的力矩,从而启动通过电视的扩散。我们还开发了一套特殊的人工TVG,用于训练,以模拟TVG中的随机扩散过程,这表明STIM网络即使在非确定性环境中也可以学习有效的政策。还使用现实世界中的TVG评估了刺激,它还可以通过节点有效地传播信息。最后,我们还表明,刺激模型的时间复杂性为$ O(| e |)$。因此,STIM提出了一种新颖的方法,可以通过简单地更改采用的奖励功能来改变电视中的有效信息扩散,在这种方法中,可以改变模型的目标。

Network seeding for efficient information diffusion over time-varying graphs~(TVGs) is a challenging task with many real-world applications. There are several ways to model this spatio-temporal influence maximization problem, but the ultimate goal is to determine the best moment for a node to start the diffusion process. In this context, we propose Spatio-Temporal Influence Maximization~(STIM), a model trained with Reinforcement Learning and Graph Embedding over a set of artificial TVGs that is capable of learning the temporal behavior and connectivity pattern of each node, allowing it to predict the best moment to start a diffusion through the TVG. We also develop a special set of artificial TVGs used for training that simulate a stochastic diffusion process in TVGs, showing that the STIM network can learn an efficient policy even over a non-deterministic environment. STIM is also evaluated with a real-world TVG, where it also manages to efficiently propagate information through the nodes. Finally, we also show that the STIM model has a time complexity of $O(|E|)$. STIM, therefore, presents a novel approach for efficient information diffusion in TVGs, being highly versatile, where one can change the goal of the model by simply changing the adopted reward function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源