论文标题
在磁化高原上,kagome抗铁磁体异常
Anomalies of kagome antiferromagnets on magnetization plateaus
论文作者
论文摘要
我们通过采用两种互补方法:在封闭的边界条件下的绝热通量插入,在封闭的边界条件下插入了't Hooft Anomaly论点,在QUASI-ONE-ONE二级限制中的固有式限制中,在磁化高原上讨论了旋转的基础退化型$ 1/2 $ kagome-lattice量子量子反铁磁铁。倾斜边界条件的通量插入限制了地面退化的下限,$ 1/9 $,$ 1/3 $,$ 5/9 $,以及$ 7/9 $磁力化的高原下$ \ Mathrm {u(1)} $ spitation和Translation Symmetries:$ 3 $,$ 3 $,$ 3 $ 3,$ 3 $ 3.这一结果激发了我们进一步发展对$ 1/3 $高原的反常解释。利用异常对空间各向异性的不敏感性,我们检查了从准二维的观点中的$ 1/3 $高原上独特的基态状态的存在。在准二维极限中,kagome抗fiferromagnets被还原为弱耦合的三腿旋转管。在这里,我们指出以下$ 1/3 $高原的异常描述。 While a simple $S=1/2$ three-leg spin tube cannot have the unique gapped ground state on the $1/3$ plateau because of an anomaly between a $\mathbb Z_3\times \mathbb Z_3$ symmetry and the translation symmetry at the $1/3$ filling, the kagome antiferromagnet breaks explicitly one of the $\mathbb Z_3$ symmetries related到$ \ mathbb z_3 $循环转换单位单元格。因此,Kagome Antiferromagnet可以在$ 1/3 $高原上具有独特的基础状态。
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a 't Hooft anomaly argument on inherent symmetries in a quasi-one-dimensional limit. The flux insertion with a tilted boundary condition restricts the lower bound of the ground-state degeneracy on $1/9$, $1/3$, $5/9$, and $7/9$ magnetization plateaus under the $\mathrm{U(1)}$ spin-rotation and the translation symmetries: $3$, $1$, $3$, and $3$, respectively. This result motivates us further to develop an anomaly interpretation of the $1/3$ plateau. Taking advantage of the insensitivity of anomalies to spatial anisotropies, we examine the existence of the unique gapped ground state on the $1/3$ plateau from a quasi-one-dimensional viewpoint. In the quasi-one-dimensional limit, kagome antiferromagnets are reduced to weakly coupled three-leg spin tubes. Here, we point out the following anomaly description of the $1/3$ plateau. While a simple $S=1/2$ three-leg spin tube cannot have the unique gapped ground state on the $1/3$ plateau because of an anomaly between a $\mathbb Z_3\times \mathbb Z_3$ symmetry and the translation symmetry at the $1/3$ filling, the kagome antiferromagnet breaks explicitly one of the $\mathbb Z_3$ symmetries related to a $\mathbb Z_3$ cyclic transformation of spins in the unit cell. Hence the kagome antiferromagnet can have the unique gapped ground state on the $1/3$ plateau.