论文标题

移动设备的对象检测处理管道的能量流量:分析和含义

Energy Drain of the Object Detection Processing Pipeline for Mobile Devices: Analysis and Implications

论文作者

Wang, Haoxin, Kim, BaekGyu, Xie, Jiang, Han, Zhu

论文摘要

将深度学习应用于对象检测提供了准确检测和对现实世界中复杂对象进行分类的能力。但是,目前,很少有移动应用程序使用深度学习,因为这种技术是计算密集型和能源耗尽的。据我们所知,本文介绍了对移动增强现实(AR)客户的能耗以及执行基于卷积神经网络(CNN)对象检测的第一个详细的实验研究,即在智能手机上本地或在边缘服务器上进行远程检测。为了准确测量智能手机上的能源消耗,并获得了对象检测处理管道的每个阶段消耗的能量分解,我们提出了一种新的测量策略。我们的详细测量方法完善了移动AR客户的能量分析,并揭示了有关执行基于CNN的对象检测的能源消耗的几个有趣的观点。此外,根据我们的实验结果提出了一些见解和研究机会。我们实验研究中的这些发现将指导基于CNN的对象检测的节能处理管道的设计。

Applying deep learning to object detection provides the capability to accurately detect and classify complex objects in the real world. However, currently, few mobile applications use deep learning because such technology is computation-intensive and energy-consuming. This paper, to the best of our knowledge, presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection, either locally on the smartphone or remotely on an edge server. In order to accurately measure the energy consumption on the smartphone and obtain the breakdown of energy consumed by each phase of the object detection processing pipeline, we propose a new measurement strategy. Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection. Furthermore, several insights and research opportunities are proposed based on our experimental results. These findings from our experimental study will guide the design of energy-efficient processing pipeline of CNN-based object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源