论文标题
同源多项式系数和交替表面链路的扭曲数量
Homological Polynomial Coefficients and the Twist Number of Alternating Surface Links
论文作者
论文摘要
对于$ d $ a缩小的交替表面链路图,我们就多项式不变的系数限制了$ d $的扭曲数。为此,我们介绍了Krushkal定义的同源Kauffman支架的概括。结合Futer,Kalfagianni和Purcell的作品,根据这些系数,这产生了一类交替的表面链路的双曲体积。
For $D$ a reduced alternating surface link diagram, we bound the twist number of $D$ in terms of the coefficients of a polynomial invariant. To this end, we introduce a generalization of the homological Kauffman bracket defined by Krushkal. Combined with work of Futer, Kalfagianni, and Purcell, this yields a bound for the hyperbolic volume of a class of alternating surface links in terms of these coefficients.