论文标题
生成的对抗堆积自动编码器
Generative Adversarial Stacked Autoencoders
论文作者
论文摘要
生成对抗网络(GAN)在图像生成任务中已成为主要的。他们的成功归因于采用两种模型的培训制度:一个发电机G和歧视器D,在最小值零和游戏中竞争。尽管如此,甘恩由于对超参数和参数初始化的敏感性而难以训练,这通常会导致消失的梯度,非连接或模式崩溃,而发电机无法创建具有不同变化的样品的情况。在这项工作中,我们提出了一种新型的生成对抗堆积的卷积自动编码器(GASCA)模型,并提出了一种以有效和增量方式训练对抗性自动编码器的生成对抗渐进的贪婪层次学习算法。我们的训练方法比香草联合培训产生的重建误差的图像明显低。
Generative Adversarial Networks (GANs) have become predominant in image generation tasks. Their success is attributed to the training regime which employs two models: a generator G and discriminator D that compete in a minimax zero sum game. Nonetheless, GANs are difficult to train due to their sensitivity to hyperparameter and parameter initialisation, which often leads to vanishing gradients, non-convergence, or mode collapse, where the generator is unable to create samples with different variations. In this work, we propose a novel Generative Adversarial Stacked Convolutional Autoencoder(GASCA) model and a generative adversarial gradual greedy layer-wise learning algorithm de-signed to train Adversarial Autoencoders in an efficient and incremental manner. Our training approach produces images with significantly lower reconstruction error than vanilla joint training.