论文标题
使用深馈电直接神经网络模型预测DNA电导
Predicting the DNA Conductance using Deep Feed Forward Neural Network Model
论文作者
论文摘要
双链DNA(DSDNA)已被确定为电荷迁移的有效培养基,使其成为分子电子和生物学研究领域的最前沿。电荷迁移速率由DNA/RNA的两个核苷酸酶之间的电子耦合控制。这些电子耦合在很大程度上取决于分子间的几何和方向。使用计算要求的第一原理计算估算分子的所有可能相对几何的这些电子耦合需要大量时间和计算资源。在本文中,我们提出了一个基于机器学习(ML)的模型,以计算任何长度和序列的dsDNA/dsRNA的任何两个基础之间的电子耦合,并绕过计算昂贵的第一原理计算。使用编码DNA碱基对的原子身份和坐标来准备输入数据集的库仑矩阵表示,我们训练一个前馈神经网络模型。我们的NN模型可以预测dsDNA碱基对之间的电子耦合,任何结构取向的MAE小于0.014 eV。我们进一步使用NN预测的电子耦合值来计算dsDNA/dsRNA电导。
Double-stranded DNA (dsDNA) has been established as an efficient medium for charge migration, bringing it to the forefront of the field of molecular electronics as well as biological research. The charge migration rate is controlled by the electronic couplings between the two nucleobases of DNA/RNA. These electronic couplings strongly depend on the intermolecular geometry and orientation. Estimating these electronic couplings for all the possible relative geometries of molecules using the computationally demanding first-principles calculations requires a lot of time as well as computation resources. In this article, we present a Machine Learning (ML) based model to calculate the electronic coupling between any two bases of dsDNA/dsRNA of any length and sequence and bypass the computationally expensive first-principles calculations. Using the Coulomb matrix representation which encodes the atomic identities and coordinates of the DNA base pairs to prepare the input dataset, we train a feedforward neural network model. Our NN model can predict the electronic couplings between dsDNA base pairs with any structural orientation with a MAE of less than 0.014 eV. We further use the NN predicted electronic coupling values to compute the dsDNA/dsRNA conductance.