论文标题
算术表达构建
Arithmetic Expression Construction
论文作者
论文摘要
$ n $何时可以使用$ \ {+, - , - \ times,÷\} $的算术运算符组合给定数字?我们研究了算术表达构建问题的三种变化:当表达(1)不受限制时; (2)具有指定的括号和操作员模式(只有数字需要分配给空白);或(3)必须匹配数字的指定顺序(但算子和括号是免费的)。对于这些变体中的每一个,以及$ \ {+, - , - \ times,÷\} $的许多子集,我们证明了问题np complete,有时从弱的意义上,有时从强大的意义上讲。这些证据中的大多数都使用了“合理函数框架”,该框架证明了这些问题的等效性,即在正整数中具有值的理性函数中的值。
When can $n$ given numbers be combined using arithmetic operators from a given subset of $\{+, -, \times, ÷\}$ to obtain a given target number? We study three variations of this problem of Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or (3) must match a specified ordering of the numbers (but the operators and parenthesization are free). For each of these variants, and many of the subsets of $\{+,-,\times,÷\}$, we prove the problem NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs make use of a "rational function framework" which proves equivalence of these problems for values in rational functions with values in positive integers.