论文标题

算术表达构建

Arithmetic Expression Construction

论文作者

Alcock, Leo, Asif, Sualeh, Bosboom, Jeffrey, Brunner, Josh, Chen, Charlotte, Demaine, Erik D., Epstein, Rogers, Hesterberg, Adam, Hirschfeld, Lior, Hu, William, Lynch, Jayson, Scheffler, Sarah, Zhang, Lillian

论文摘要

$ n $何时可以使用$ \ {+, - , - \ times,÷\} $的算术运算符组合给定数字?我们研究了算术表达构建问题的三种变化:当表达(1)不受限制时; (2)具有指定的括号和操作员模式(只有数字需要分配给空白);或(3)必须匹配数字的指定顺序(但算子和括号是免费的)。对于这些变体中的每一个,以及$ \ {+, - , - \ times,÷\} $的许多子集,我们证明了问题np complete,有时从弱的意义上,有时从强大的意义上讲。这些证据中的大多数都使用了“合理函数框架”,该框架证明了这些问题的等效性,即在正整数中具有值的理性函数中的值。

When can $n$ given numbers be combined using arithmetic operators from a given subset of $\{+, -, \times, ÷\}$ to obtain a given target number? We study three variations of this problem of Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or (3) must match a specified ordering of the numbers (but the operators and parenthesization are free). For each of these variants, and many of the subsets of $\{+,-,\times,÷\}$, we prove the problem NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs make use of a "rational function framework" which proves equivalence of these problems for values in rational functions with values in positive integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源