论文标题

通过分子动力学模拟,来自纳米结构石墨表面的冰的粘附剪切强度

Adhesive Shear Strength of Ice from Nanostructured Graphite Surfaces by Molecular Dynamics Simulations

论文作者

Afshar, Amir, Meng, Dong

论文摘要

在低温环境下冰的积累问题在许多民用基础设施中导致多个问题和严重损害,从而极大地影响了人类日常生活。但是,尽管在制造抗冰或冰上表面上有重大考虑,但仍要求设计具有良好冰期特性的表面。在这项研究中,我们使用了全原子分子动力学(MD)模拟来研究原子平滑和纳米纹状体石墨底物上的冰剪切机制。我们发现,剪冰强度在很大程度上取决于冰温,表面底物的晶格结构,表面纳米纹理结构的大小以及互插的水分子的深度。我们的结果表明,纳米级表面粗糙度和互插的水分子的深度倾向于增加冰剪切衰竭应力,对于瓦楞纸底物,这将进一步提高,随着互插的水分子深度的增加,这是由于菌株被很好地分布到冰块中的菌株的结果。这些结果提供了对表面纳米纹状体对冰剪剪切机制的影响的深入理解,该机构在设计抗染色表面时提供了有用的信息,并提供了首次理论参考,以理解表面纳米纹状体结构的影响以及互锁水对粘附冰剪切强度对纳米叶片表面的影响。关键词:冰,石墨烯,剪切强度,分子动力学模拟

The issue of ice accumulation at low-temperature circumstances causes multiple problems and serious damages in many civil infrastructures which substantially influence human daily life. However, despite the significant consideration in manufacturing anti-icing or icephobic surfaces, it is still demanding to design surfaces with well ice-repellent properties. Here in this study, we used all-atom molecular dynamics (MD) simulations to investigate ice shearing mechanism on atomistically smooth and nanotexture graphite substrates. We find that ice shearing strength strongly depends on ice temperature, the lattice structure of the surface substrate, the size of the surface nanotexture structure, and the depth of interdigitated water molecules. Our results indicate nanoscale surface roughness and depth of interdigitated water molecules tend to increase ice shear failure stress and for corrugated substrates, this is further raised with increasing the depth of interdigitated water molecules which is a result of strain being distributed well into the ice cube away from the interface. These results supply an in-depth understanding of the effect of surface nanotexture on ice shearing mechanism that provides useful information in designing anti-icing surfaces and provide for the first-time theoretical references in understanding the effect of surface nanotexture structure and depth of interlocked water on adhesive ice shear strength on nanotextured surfaces. Keywords: Ice, Graphene, Shear strength, Molecular dynamics simulation

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源