论文标题
激发态rényi熵和子系统的距离二维非压缩的骨值理论。第二部分。多粒子状态
Excited state Rényi entropy and subsystem distance in two-dimensional non-compact bosonic theory. Part II. Multi-particle states
论文作者
论文摘要
我们研究了激发态的Rényi熵和子系统Schatten距离在二维无质量的非紧凑型骨野外理论中,这是一个保形场理论。自由非紧密骨气理论的离散化提供了与局部耦合的谐波链。我们考虑了与谐波链状态相对应的磁场理论,其激发态具有多个Quasiparticle,我们称之为多粒子状态。这将同一作者的先前工作扩展到了更一般的激动状态。在现场理论中,我们获得了几个低洼状态的确切的rényi熵和子系统schatten距离。我们还获得了一般激发态的Rényi熵和子系统距离的短间隔扩展。在局部耦合的谐波链中,我们使用波函数方法在数值上计算激发状态rényi熵和子系统schatten距离。我们在谐波链的无间隙极限中发现了现场理论中的分析结果和数值结果的极好匹配。我们还对Rényi熵和谐波链极限极限的子系统距离进行了一些初步研究。
We study the excited state Rényi entropy and subsystem Schatten distance in the two-dimensional free massless non-compact bosonic field theory, which is a conformal field theory. The discretization of the free non-compact bosonic theory gives the harmonic chain with local couplings. We consider the field theory excited states that correspond to the harmonic chain states with excitations of more than one quasiparticle, which we call multi-particle states. This extends the previous work by the same authors to more general excited states. In the field theory we obtain the exact Rényi entropy and subsystem Schatten distance for several low-lying states. We also obtain the short interval expansion of the Rényi entropy and subsystem Schatten distance for general excited states. In the locally coupled harmonic chain we calculate numerically the excited state Rényi entropy and subsystem Schatten distance using the wave function method. We find excellent matches of the analytical results in the field theory and numerical results in the gapless limit of the harmonic chain. We also make some preliminary investigations of the Rényi entropy and the subsystem Schatten distance in the extremely gapped limit of the harmonic chain.