论文标题

与对称性的关键表面准斑块方程的非衰减解决方案

Non-decaying solutions to the critical surface quasi-geostrophic equations with symmetries

论文作者

Albritton, Dallas, Bradshaw, Zachary

论文摘要

我们开发了一种自相似解决方案的理论,用于关键的表面准地神经斑方程。我们为各种规律性类别中的任意大数据构建自相似的解决方案,并在小型数据制度,唯一性和全球渐近稳定性中证明。这些解决方案不偿还$ | x | \ to +\ infty $,导致速度$ \ vec {r}^\perpθ$中的歧义。通过强加$ m $折的旋转对称性来纠正这种歧义。这里展出的自相似解决方案就在于已知的良好的理论之外,并且有望阐明由于对称性的分叉,与工作\ cite \ cite {jiasverakillpposed,guillodsverak}相比,在Navier-Stokes方程式上。

We develop a theory of self-similar solutions to the critical surface quasi-geostrophic equations. We construct self-similar solutions for arbitrarily large data in various regularity classes and demonstrate, in the small data regime, uniqueness and global asymptotic stability. These solutions are non-decaying as $|x| \to +\infty$, which leads to ambiguity in the velocity $\vec{R}^\perp θ$. This ambiguity is corrected by imposing $m$-fold rotational symmetry. The self-similar solutions exhibited here lie just beyond the known well-posedness theory and are expected to shed light on potential non-uniqueness, due to symmetry-breaking bifurcations, in analogy with work \cite{jiasverakillposed,guillodsverak} on the Navier-Stokes equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源