论文标题

强烈非线性晶格中的奇异和非共生多体动力学

Ergodic and non-ergodic many-body dynamics in strongly nonlinear lattices

论文作者

Hahn, Dominik, Urbina, Juan-Diego, Richter, Klaus, Dubertrand, Remy, Sondhi, S. L.

论文摘要

在经典多体动力学中对非线性振荡器链的研究具有悠久的历史,可以追溯到费米,意大利面,乌拉姆和tsingou(fput)的开创性工作。我们介绍了一个新的此类系统家族,该系列由$ n $和谐耦合粒子的链组成,并通过将每个粒子的运动限制在用硬壁上的盒子/体育场中引入的非线性。体育馆在一个维度的晶格上排列,但它们单独不必是一维的,因此允许在晶格规模上引入混乱。在大多数情况下,我们研究了运动完全是一维的情况。我们发现该系统具有任何有限值$ n $的混合相空间。 Lyapunov光谱在随机选择的相空间位置的计算以及哈密顿进化和相空间之间的直接比较表明,相位空间的常规区域在大系统尺寸下并不显着。尽管我们的模型的连续限制本身是可整合的SINH-GORDON理论的单一极限,但我们看不出任何在FPUT工作中著名的非恋性的证据。最后,我们检查了链条的链条,这些链条局限于二维体育场,在该体育场已经混乱,并在小型系统尺寸上找到更混乱的相位空间。

The study of non-linear oscillator chains in classical many-body dynamics has a storied history going back to the seminal work of Fermi, Pasta, Ulam and Tsingou (FPUT). We introduce a new family of such systems which consist of chains of $N$ harmonically coupled particles with the non-linearity introduced by confining the motion of each individual particle to a box/stadium with hard walls. The stadia are arranged on a one dimensional lattice but they individually do not have to be one dimensional thus permitting the introduction of chaos already at the lattice scale. For the most part we study the case where the motion is entirely one dimensional. We find that the system exhibits a mixed phase space for any finite value of $N$. Computations of Lyapunov spectra at randomly picked phase space locations and a direct comparison between Hamiltonian evolution and phase space averages indicate that the regular regions of phase space are not significant at large system sizes. While the continuum limit of our model is itself a singular limit of the integrable sinh-Gordon theory, we do not see any evidence for the kind of non-ergodicity famously seen in the FPUT work. Finally, we examine the chain with particles confined to two dimensional stadia where the individual stadium is already chaotic, and find a much more chaotic phase space at small system sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源