论文标题
非平衡量子自由能和有效温度,产生功能并影响作用
Nonequilibrium Quantum Free Energy and Effective Temperature, Generating Functional and Influence Action
论文作者
论文摘要
提出了非平衡自由能$ \ MATHCAL {f} _ {\ textsc {s}} $的定义,用于动态高斯量子开放系统,与热浴有力耦合,并通过在粗心的有效动作和影响动作的情况下通过生成功能来提供形式推导。对于以这里研究的量子布朗运动模型为例的高斯开放量子系统,可以自然地引入时间变化的有效温度,并以此为notquilibrium free Energy $ \ Mathcal {f} _ {\ textsc {\ textsc {s}}}可以相应地定义$ \ Mathcal {u} _ {\ textsc {s}} $($ s $)的$。与引用浴温温度的文献中发现的非平衡自由能相反,我们在这里发现的非平衡热力学函数遵守熟悉的关系$ \ Mathcal {f} _ {\ textsc {s s}}}}}}}(t) t _ {\ textsc {eff}}(t)\,\ mathcal {s} _ {vn}(t)(t)$ {\ it在系统的任何时间的所有时刻}中,在系统的完全无元素进化历史记录中。在系统平衡之后,它们在弱耦合极限的情况下与传统平衡热力学中的对应物重合。由于有效温度同时捕获了系统状态及其与浴室的相互作用,因此在系统的平衡下,它接近略高于初始浴室温度的值。值得注意的是,对于零温度浴,它仍然是非零的,这表明存在系统托架纠缠的存在。合理地,在高浴温度和超湿耦合下,它与浴温的温度无法区分。对于动态高斯量子系统而言,这里发现的非平衡热力学函数和关系应为建立有意义的非平衡量子热力学理论打开有用的途径。
A definition of nonequilibrium free energy $\mathcal{F}_{\textsc{s}}$ is proposed for dynamical Gaussian quantum open systems strongly coupled to a heat bath and a formal derivation is provided by way of the generating functional in terms of the coarse-grained effective action and the influence action. For Gaussian open quantum systems exemplified by the quantum Brownian motion model studied here, a time-varying effective temperature can be introduced in a natural way, and with it, the nonequilibrium free energy $\mathcal{F}_{\textsc{s}}$, von Neumann entropy $\mathcal{S}_{vN}$ and internal energy $\mathcal{U}_{\textsc{s}}$ of the reduced system ($S$) can be defined accordingly. In contrast to the nonequilibrium free energy found in the literature which references the bath temperature, the nonequilibrium thermodynamic functions we find here obey the familiar relation $\mathcal{F}_{\textsc{s}}(t)=\mathcal{U}_{\textsc{s}}(t)- T_{\textsc{eff}} (t)\,\mathcal{S}_{vN}(t)$ {\it at any and all moments of time} in the system's fully nonequilibrium evolution history. After the system equilibrates they coincide, in the weak coupling limit, with their counterparts in conventional equilibrium thermodynamics. Since the effective temperature captures both the state of the system and its interaction with the bath, upon the system's equilibration, it approaches a value slightly higher than the initial bath temperature. Notably, it remains nonzero for a zero-temperature bath, signaling the existence of system-bath entanglement. Reasonably, at high bath temperatures and under ultra-weak couplings, it becomes indistinguishable from the bath temperature. The nonequilibrium thermodynamic functions and relations discovered here for dynamical Gaussian quantum systems should open up useful pathways toward establishing meaningful theories of nonequilibrium quantum thermodynamics.