论文标题
在快速衰减期间的状态泄漏并控制超导式旋转值
State leakage during fast decay and control of a superconducting transmon qubit
论文作者
论文摘要
Josephson插口量子位超导构成了许多应用程序的主要技术,包括可扩展的量子计算机和热设备。这种系统的理论建模通常是在两级近似中进行的。但是,准确的理论建模需要考虑到较高激发态的影响,而无需将系统限制为两级Qubit子空间。在这里,我们使用数值精确的随机liouville-von neumann方程方法研究了超导transmon的动力学和控制。我们专注于从理想的两级子空间中的状态泄漏的作用,用于浴缸诱发的衰减和单量门操作。由于与浴缸的强耦合,我们发现大量的短时泄漏。我们量化了单量门门中的泄漏误差,并通过拖动控制在存在下的五级transmon中证明了它们的抑制作用。我们的结果预测了两级近似值的准确性限制,以及量子动力学和控制与实验相关参数集的可能内在约束。
Superconducting Josephson junction qubits constitute the main current technology for many applications, including scalable quantum computers and thermal devices. Theoretical modeling of such systems is usually done within the two-level approximation. However, accurate theoretical modeling requires taking into account the influence of the higher excited states without limiting the system to the two-level qubit subspace. Here, we study the dynamics and control of a superconducting transmon using the numerically exact stochastic Liouville-von Neumann equation approach. We focus on the role of state leakage from the ideal two-level subspace for bath induced decay and single-qubit gate operations. We find significant short-time state leakage due to the strong coupling to the bath. We quantify the leakage errors in single-qubit gates and demonstrate their suppression with DRAG control for a five-level transmon in the presence of decoherence. Our results predict the limits of accuracy of the two-level approximation and possible intrinsic constraints in qubit dynamics and control for an experimentally relevant parameter set.