论文标题
剪切场的高阶统计:一种机器学习方法
Higher order statistics of shear field: a machine learning approach
论文作者
论文摘要
即将进行的地面和太空调查将产生的前所未有的数量和镜头数据的出色质量,这是一个很好的机会,可以阐明有关我们的宇宙以及标准$λ$ CDM宇宙学模型的有效性仍然没有解决的问题。因此,开发可以利用大量数据将使我们以最有效的方式访问大量数据的新技术很重要。因此,我们决定研究一种新方法来治疗弱透镜高阶统计量,由于它们的能力探测了剪切场的非高斯特性,因此众所周知,它们在宇宙学参数之间破裂。特别是,提出的方法直接适用于观察到的数量,即嘈杂的星系椭圆度。我们制作了具有不同宇宙学参数集的模拟镜头图,并用它们来测量高阶矩,Minkowski功能,BETTI数字和与图形论相关的其他统计数据。这使我们能够构建具有不同大小,精度和平滑性的数据集。然后,我们应用了几种机器学习算法来确定哪种方法最能预测与每个模拟相关的实际宇宙学参数。最佳模型导致简单的多维线性回归。我们使用此模型比较了来自不同数据集的结果,并发现我们可以良好地测量我们考虑的大多数参数。我们还研究了每个高阶估计器与几个信噪阈值和红移箱的不同宇宙学参数之间的关系。鉴于有希望的结果,我们将这种方法视为一种宝贵的资源,值得进一步发展。
The unprecedented amount and the excellent quality of lensing data that the upcoming ground- and space-based surveys will produce represent a great opportunity to shed light on the questions that still remain unanswered concerning our universe and the validity of the standard $Λ$CDM cosmological model. Therefore, it is important to develop new techniques that can exploit the huge quantity of data that future observations will give us access to in the most effective way possible. For this reason, we decided to investigate the development of a new method to treat weak lensing higher order statistics, which are known to break degeneracy among cosmological parameters thanks to their capability of probing the non-Gaussian properties of the shear field. In particular, the proposed method directly applies to the observed quantity, i.e., the noisy galaxy ellipticity. We produced simulated lensing maps with different sets of cosmological parameters and used them to measure higher order moments, Minkowski functionals, Betti numbers, and other statistics related to graph theory. This allowed us to construct datasets with different size, precision, and smoothing. We then applied several machine learning algorithms to determine which method best predicts the actual cosmological parameters associated with each simulation. The best model resulted to be simple multidimensional linear regression. We used this model to compare the results coming from the different datasets and found out that we can measure with good accuracy the majority of the parameters that we considered. We also investigated the relation between each higher order estimator and the different cosmological parameters for several signal-to-noise thresholds and redshifts bins. Given the promising results, we consider this approach as a valuable resource, worth of further development.