论文标题
在楔形压力下
On wedge-slamming pressures
论文作者
论文摘要
楔形物的水进入已成为海洋和海军工程研究中的模型测试。瓦格纳理论(Wagner Theory)始于1932年,预测了影响压力,并说明了楔形区域附近各种流动域引起的总压力的贡献。在这里,我们在整个影响事件中使用高富达传感器研究了在整个影响事件中以恒定,控制的速度猛击楔形和锥体的猛撞。在撞击期间和之后,测量了影响器上两个位置的压力。使用惯性压力和时间尺度讨论了两个影响器的压力时间序列。将非二二项式压力时间序列与传感器集成的平均复合瓦格纳溶液(Zhao&Faltinsen,1993),Logvinovich(1969,4.7),修改的Logobkin&Malenica(Korobkin&Malenica 2005)和广义瓦格纳模型(Korobkin 2004)。此外,我们为文献中在将Wagner模型扩展到三维的文献中提供了独立的实验依据。该论文的第二部分涉及前IMPACT空气缓冲 - 这是一个重要的问题,因为它负责确定被困在撞击时的空气层的厚度。使用定制的技术,我们测量空气水接口动力学,因为它响应了在冲击器和自由表面之间介入的空气层压力的累积。我们在实验和使用两流体边界积分(BI)模拟上都表明,由于空气冲洗而引起的界面的前面偏转均由电势流完全描述。
The water entry of a wedge has become a model test in marine and naval engineering research. Wagner theory, originating in 1932, predicts impact pressures, and accounts for contributions to the total pressure arising from various flow domains in the vicinity of the wetting region on the wedge. Here we study the slamming of a wedge and a cone at a constant, well-controlled velocity throughout the impact event using high fidelity sensors. Pressures at two locations on the impactor are measured during and after impact. Pressure time series from the two impactors are discussed using inertial pressure and time scales. The non-dimensionalised pressure time series are compared to sensor-integrated averaged composite Wagner solutions (Zhao & Faltinsen 1993), Logvinovich (1969, 4.7), modified Logvinovich (Korobkin & Malenica 2005) and generalised Wagner models (Korobkin 2004). In addition, we provide an independent experimental justification of approximations made in the literature in extending the Wagner model to three-dimensions. The second part of the paper deals with pre-impact air cushioning -- an important concern since it is responsible for determining the thickness of air layer trapped upon impact. Using a custom-made technique we measure the air-water interface dynamics as it responds to the build up of pressure in the air layer intervening in between the impactor and the free surface. We show both experimentally and using two-fluid boundary integral (BI) simulations, that the pre-impact deflection of the interface due to air-cushioning is fully described by potential flow.