论文标题

与原型适应的混合一致性培训,用于几次学习

Hybrid Consistency Training with Prototype Adaptation for Few-Shot Learning

论文作者

Ye, Meng, Lin, Xiao, Burachas, Giedrius, Divakaran, Ajay, Yao, Yi

论文摘要

很少有射击学习(FSL)旨在提高模型在低数据制度中的概括能力。最近的FSL工作通过公制学习,元学习,表示学习等取得了稳步的进步。但是,由于以下长期困难,FSL仍然具有挑战性。 1)看到和看不见的类是不相交的,导致训练和测试之间的分布变化。 2)在测试过程中,以前看不见的类别的标记数据很少,因此很难可靠地从标记的支持示例推断到未标记的查询示例。为了应对第一个挑战,我们引入了混合一致性训练,以共同利用插值一致性,包括插值隐藏的特征,这些特征在本地施加线性行为和数据增强一致性,从而了解针对样品变化的强大嵌入。至于第二个挑战,我们使用未标记的示例来迭代标准化特征和适应原型,而不是常用的一次性更新,以实现更可靠的基于原型的托管推理。我们表明,我们的方法比在五个FSL数据集上具有类似骨架的最先进方法相比,提高了2%至5%,而更值得注意的是,对于更具挑战性的跨域FSL而言,有7%至8%的改善。

Few-Shot Learning (FSL) aims to improve a model's generalization capability in low data regimes. Recent FSL works have made steady progress via metric learning, meta learning, representation learning, etc. However, FSL remains challenging due to the following longstanding difficulties. 1) The seen and unseen classes are disjoint, resulting in a distribution shift between training and testing. 2) During testing, labeled data of previously unseen classes is sparse, making it difficult to reliably extrapolate from labeled support examples to unlabeled query examples. To tackle the first challenge, we introduce Hybrid Consistency Training to jointly leverage interpolation consistency, including interpolating hidden features, that imposes linear behavior locally and data augmentation consistency that learns robust embeddings against sample variations. As for the second challenge, we use unlabeled examples to iteratively normalize features and adapt prototypes, as opposed to commonly used one-time update, for more reliable prototype-based transductive inference. We show that our method generates a 2% to 5% improvement over the state-of-the-art methods with similar backbones on five FSL datasets and, more notably, a 7% to 8% improvement for more challenging cross-domain FSL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源