论文标题

圆柱形和不对称3D卷积网络,用于激光雷达分割

Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation

论文作者

Zhu, Xinge, Zhou, Hui, Wang, Tai, Hong, Fangzhou, Ma, Yuexin, Li, Wei, Li, Hongsheng, Lin, Dahua

论文摘要

大规模驾驶现场激光雷达分割的最先进方法通常将点云投放到2D空间,然后通过2D卷积处理它们。尽管该公司显示了点云中的竞争力,但它不可避免地改变并放弃了3D拓扑和几何关系。一种自然的补救措施是利用3D体素化和3D卷积网络。但是,我们发现在室外云中,以这种方式获得的改进非常有限。一个重要的原因是室外点云的特性,即稀疏性和变化的密度。在这项研究的激励下,我们提出了一个新的室外激光雷达分割的框架,其中圆柱形分区和不对称的3D卷积网络旨在探索3D几何pat-pat-tern,同时保持这些固有的特性。此外,引入了一个优化模块,以减轻基于体素的标签编码的干扰。我们在两个大规模数据集(即Semantickitti和Nuscenes)上评估了所提出的模型。我们的方法在Semantickitti的排行榜中获得了第一名,并以明显的边距胜过Nuscenes上的现有方法,约为4%。此外,提出的3D框架还可以很好地推广到LIDAR PANOPTIC分割和LIDAR 3D检测。

State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the point clouds to 2D space and then process them via 2D convolution. Although this corporation shows the competitiveness in the point cloud, it inevitably alters and abandons the 3D topology and geometric relations. A natural remedy is to utilize the3D voxelization and 3D convolution network. However, we found that in the outdoor point cloud, the improvement obtained in this way is quite limited. An important reason is the property of the outdoor point cloud, namely sparsity and varying density. Motivated by this investigation, we propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pat-tern while maintaining these inherent properties. Moreover, a point-wise refinement module is introduced to alleviate the interference of lossy voxel-based label encoding. We evaluate the proposed model on two large-scale datasets, i.e., SemanticKITTI and nuScenes. Our method achieves the 1st place in the leaderboard of SemanticKITTI and outperforms existing methods on nuScenes with a noticeable margin, about 4%. Furthermore, the proposed 3D framework also generalizes well to LiDAR panoptic segmentation and LiDAR 3D detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源