论文标题
Chern-Calabi在Hermitian歧管上流动
A Chern-Calabi flow on Hermitian manifolds
论文作者
论文摘要
我们研究了非kähler设置中卡拉比流的类似物,以消失,以消失的第一粒秘密阶级。我们证明了沿着Chern标量曲率均匀结合的沿流量的发展度量的先验估计值。如果Chern标量曲率一直保持均匀界限,我们表明该流平稳地收敛到$ \ partial \ bar {\ partial} $类中的独特的Chern-ricci-flat指标 - 初始度量的类别。
We study an analogue of the Calabi flow in the non-Kähler setting for compact Hermitian manifolds with vanishing first Bott-Chern class. We prove a priori estimates for the evolving metric along the flow given a uniform bound on the Chern scalar curvature. If the Chern scalar curvature remains uniformly bounded for all time, we show that the flow converges smoothly to the unique Chern-Ricci-flat metric in the $\partial\bar{\partial}$-class of the initial metric.