论文标题
模块化对称风味模型的景观
Landscape of Modular Symmetric Flavor Models
论文作者
论文摘要
我们从模块化风味对称性的角度研究了模量稳定。我们系统地分析了在通量压缩的可能配置,研究模量值的概率并显示哪些模量值从模量稳定中有利的概率。然后,我们研究了它们对模块化对称风味模型的影响。发现确定风味结构的复杂结构模量$τ$的分布聚集在固定点上,剩余$ \ mathbb {z} _3 $ symetry在$ sl(2,\ mathbb {z})$基本区域中。此外,它们聚集在其他特定点上,例如$ |τ|^2 = k/2 $和$ {\ rm re} \,τ= 0,\ pm 1/4,\ pm1/2 $之间的相交点,尽管它们的概率小于$ \ mathbb {z Z} _3 _3 $ pidepoint。通常,复杂结构模量中的CP破坏真空在弦乐景观中统计上不利。在CP破感的真空中,值$ {\ rm re} \,τ= \ pm 1/4 $特别有利,特别是当Axio-dilaton $ s $稳定在$ {\ rm re} \,s = \ pm 1/4 $时。这表明CP阶段源自字符串模量之间存在很强的相关性。
We study the moduli stabilization from the viewpoint of modular flavor symmetries. We systematically analyze stabilized moduli values in possible configurations of flux compactifications, investigating probabilities of moduli values and showing which moduli values are favorable from our moduli stabilization. Then, we examine their implications on modular symmetric flavor models. It is found that distributions of complex structure modulus $τ$ determining the flavor structure are clustered at a fixed point with the residual $\mathbb{Z}_3$ symmetry in the $SL(2,\mathbb{Z})$ fundamental region. Also, they are clustered at other specific points such as intersecting points between $|τ|^2=k/2$ and ${\rm Re}\,τ=0,\pm 1/4, \pm1/2$, although their probabilities are less than the $\mathbb{Z}_3$ fixed point. In general, CP-breaking vacua in the complex structure modulus are statistically disfavored in the string landscape. Among CP-breaking vacua, the values ${\rm Re}\,τ=\pm 1/4$ are most favorable in particular when the axio-dilaton $S$ is stabilized at ${\rm Re}\,S=\pm 1/4$. That shows a strong correlation between CP phases originated from string moduli.