论文标题
通过三合会闭合在多路复用网络中的链接预测
Link prediction in multiplex networks via triadic closure
论文作者
论文摘要
链接预测算法可以帮助理解复杂系统的结构和动态,从不完整的数据集重建网络,并预测不断发展的网络中的未来交互。基于节点之间的相似性的可用算法受这些网络中存在的链接有限的限制。在这项工作中,我们减少了后一种固有限制,并表明可以利用不同类型的关系数据来改善新链接的预测。为此,我们通过将Adamic-Adar方法推广到由任意数量的层组成的多重网络来提出一种新颖的链接预测算法,该方法编码了各种形式的相互作用。我们表明,在几种社会,生物学和技术系统上,新的度量标准优于经典的单层Adamic-Adar得分和其他最先进的方法。作为一个副产品,最大化多重ADAMIC-ADAR度量的系数表明,如何优化多重网络中构造的信息,以针对链接预测任务进行优化,从而揭示了哪些层是冗余的。有趣的是,相对于不同层的预测,这种效果可能是不对称的。我们的工作为更深入了解不同关系数据在预测新交互作用中的作用的方法铺平了道路,并为多重网络中的链接预测提供了新的算法,可以应用于多种系统。
Link prediction algorithms can help to understand the structure and dynamics of complex systems, to reconstruct networks from incomplete data sets and to forecast future interactions in evolving networks. Available algorithms based on similarity between nodes are bounded by the limited amount of links present in these networks. In this work, we reduce this latter intrinsic limitation and show that different kind of relational data can be exploited to improve the prediction of new links. To this aim, we propose a novel link prediction algorithm by generalizing the Adamic-Adar method to multiplex networks composed by an arbitrary number of layers, that encode diverse forms of interactions. We show that the new metric outperforms the classical single-layered Adamic-Adar score and other state-of-the-art methods, across several social, biological and technological systems. As a byproduct, the coefficients that maximize the Multiplex Adamic-Adar metric indicate how the information structured in a multiplex network can be optimized for the link prediction task, revealing which layers are redundant. Interestingly, this effect can be asymmetric with respect to predictions in different layers. Our work paves the way for a deeper understanding of the role of different relational data in predicting new interactions and provides a new algorithm for link prediction in multiplex networks that can be applied to a plethora of systems.