论文标题

使用生命周期感知胶囊网络对面部动作的时空分析

Spatio-Temporal Analysis of Facial Actions using Lifecycle-Aware Capsule Networks

论文作者

Churamani, Nikhil, Kalkan, Sinan, Gunes, Hatice

论文摘要

大多数面部动作单元(AU)检测的最先进方法都依赖于评估静态框架的面部表情,编码面部活动增强的快照。但是,在现实世界中的相互作用中,面部表情通常更加微妙,并且以时间方式发展,需要AU检测模型学习空间和时间信息。在本文中,我们着重于编码面部AU激活时间演变的时空和时空特征。为此,我们提出了使用框架和序列级特征执行AU检测的动作单元生命周期感知胶囊网络(AULA-CAP)。尽管在帧级时,Aula盖的胶囊层学习了空间特征原始图,以确定AU激活,但在序列级别上,它通过关注序列中相关的时空段来学习连续帧之间的时间依赖性。将学习的特征胶囊组合在一起,以便模型学会根据AU生命周期选择性地将其选择性地关注时空信息或时空信息。在两个数据集中获得最新结果的常用BP4D和GFT基准数据集评估了所提出的模型。

Most state-of-the-art approaches for Facial Action Unit (AU) detection rely upon evaluating facial expressions from static frames, encoding a snapshot of heightened facial activity. In real-world interactions, however, facial expressions are usually more subtle and evolve in a temporal manner requiring AU detection models to learn spatial as well as temporal information. In this paper, we focus on both spatial and spatio-temporal features encoding the temporal evolution of facial AU activation. For this purpose, we propose the Action Unit Lifecycle-Aware Capsule Network (AULA-Caps) that performs AU detection using both frame and sequence-level features. While at the frame-level the capsule layers of AULA-Caps learn spatial feature primitives to determine AU activations, at the sequence-level, it learns temporal dependencies between contiguous frames by focusing on relevant spatio-temporal segments in the sequence. The learnt feature capsules are routed together such that the model learns to selectively focus more on spatial or spatio-temporal information depending upon the AU lifecycle. The proposed model is evaluated on the commonly used BP4D and GFT benchmark datasets obtaining state-of-the-art results on both the datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源