论文标题

CG-NET:用于VHR SAR图像中各个建筑分割的有条件GIS感知网络

CG-Net: Conditional GIS-aware Network for Individual Building Segmentation in VHR SAR Images

论文作者

Sun, Yao, Hua, Yuansheng, Mou, Lichao, Zhu, Xiao Xiang

论文摘要

对象检索和重建非常高分辨率(VHR)合成孔径雷达(SAR)图像对于城市SAR应用非常重要,但由于SAR数据的复杂性,因此极具挑战性。本文介绍了大规模城市地区的单个VHR SAR图像的单个建筑细分问题。为了实现这一目标,我们将GIS数据的建筑足迹作为互补信息引入,并提出了一个新型的条件GIS感知网络(CG-NET)。拟议的模型学习了多层次的视觉特征,并采用构建足迹来标准化用于预测SAR图像中构建口罩的功能。我们使用在柏林收集的高分辨率Spotlight Terrasar-X图像来验证我们的方法。实验结果表明,提出的CG-NET有效地带来了变异骨架的改进。我们进一步比较了建筑足迹的两种表示形式,即完整的建筑占地面积和传感器可见的占地面积,以完成我们的任务,并得出结论,前者的使用可以更好地细分结果。此外,我们研究了不准确的GIS数据对我们的CG-NET的影响,这项研究表明,CG-NET与GIS数据中的位置错误相关。此外,我们提出了一种从准确的数字高程模型(DEM)的建筑物生成地面真相生成的方法,该模型可用于生成大型SAR图像数据集。分割结果可以应用于在我们的实验中证明的细度(LOD)1处的3D构建模型。

Object retrieval and reconstruction from very high resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging owing to the complexity of SAR data. This paper addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from GIS data as complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multi-level visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image datasets. The segmentation results can be applied to reconstruct 3D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源