论文标题

分析的几何形状和霍奇 - 弗罗贝尼斯结构

Analytic Geometry and Hodge-Frobenius Structure

论文作者

Tong, Xin

论文摘要

在本文中,我们研究了Frobenius结构,以较高的$ p $ -adic分析几何形状和相应的$ p $ - 亚种功能分析。这将奠定基础,以进一步研究Frobenius模块的某些广义共同体,以及相应的广义岩川理论,并以Burns-flach-fukaya-Kato和Nakamura的精神为基础,并普遍化的非交通量的Tamagawa数字猜想(当然是原始的非公认的Tamagagawa数字),以pallbran的态度构想。我们将在Carter-Kedlaya-Zábrádi和Pal-Zábrádi之后提出的计划中工作,我们将密切关注Kedlaya-pottharst-Xiao的方法,以研究概括的$ p $ p $ adic hodge结构的相应变形。

In this paper, we study Frobenius structures in higher dimensional $p$-adic analytic geometry and the corresponding $p$-adic functional analysis. This will build up foundations for further study on some generalized cohomology of Frobenius modules and the corresponding generalized Iwasawa theory and generalized noncommutative Tamagawa number conjectures in the spirit of Burns-Flach-Fukaya-Kato and Nakamura (as well as certainly the original noncommutative Tamagawa number conjectures as observed by Pal-Zábrádi). We will work in the program proposed by Carter-Kedlaya-Zábrádi and after Pal-Zábrádi, and we will follow closely the approach from Kedlaya-Pottharst-Xiao to investigate the corresponding deformation of the generalized $p$-adic Hodge structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源