论文标题
关于属性的交叉绩效迁移,与自然数分部操作员有关
On Cross Hyperoperatorial Migration of Properties, Related to Natural Number Division Operator
论文作者
论文摘要
在文章中,整数划分属性和相关的主要因素自然数表示概念已在整个无限的荷运输层次结构中定义。这些定义是在独特的算术操作之间和更高版本中进行的,该定义组成了此层次结构(加法,乘法,指示,四位化等)。它允许“主要因素”,“乘数”,“ divider”,“自然数因子表示”等的惯常概念,主要与相同的意义与每个操作相关。作为基于乘法的算术基本定理(FTA)的类比,制定了基于凸的定理。该定理指出,任何自然数量$ m $都可以独特地表示为类似塔的指示:$ m = a_n \ uparrow(a_ {n-1} \ uparrow(\ ldots(a_2 \ uparrow a_1)\ ldots)\ ldots \ ldots \ ldots),$ a_i \ neq neq neq 1(inq where where)操作),指示组件,以一定的独特顺序遵循,并在文章中命名为二次。
In the article integer divisibility properties and related prime factors natural number representation concepts have been defined over the whole infinite hyperoperation hierarchy. The definitions have been made across and above of unique arithmetic operations, composing this hierarchy (addition, multiplication, exponentiation, tetration and so on). It allows the habitual concepts of "prime factor", "multiplier", "divider", "natural number factors representation" etc., to be associated mainly with the same sense, with the each of those operations. As analogy of multiplication-based Fundamental Theorem of Arithmetic (FTA), an exponentiation-based theorem is formulated. The theorem states that any natural number $M$ can be uniquely represented as a tower-like exponentiation: $M=a_n\uparrow(a_{n-1}\uparrow (\ldots (a_2\uparrow a_1)\ldots )),$ where $a_i\neq 1 (i=1,\ldots,n)$ are primitive in some sense (related to the exponentiation operation), exponentiation components, following one by one in some unique order and named in the article as biprimes.