论文标题

通过舒伯特分层的真实草个者的同谋

The cohomology of real Grassmannians via Schubert stratifications

论文作者

Berry, Eric, Tilton, Scotty

论文摘要

在本文中,我们提出了一个封闭式的公式,以实现真正的司司曼尼亚人的同谋。为了实现这一目标,我们使用分层空间的理论来计算计算共同体学的链复合物中的差异。具体而言,我们将舒伯特细胞组织为田纳卡弗朗西斯(Ayala)的圆锥形平滑分层空间。其中的链接使用差异拓扑中的方法产生了寻求的差异。此外,我们确定了该链复合物的同构类型,并使用该结果为具有任意系数的真实草个者的共同体的添加剂提供了封闭的公式。

In this paper, we present a closed formula for the cohomology of real Grassmannians. To achieve this, we use a theory of stratified spaces to compute the differentials in a chain complex that computes the cohomology. Specifically, we organize Schubert cells as a conically smooth stratified space in the sense of Ayala, Francis, Tanaka; the links therein yield the sought differentials, using methods in differential topology. Further, we identify the isomorphism type of this chain complex and we use this result to provide a closed formula for the additive structure of the cohomology of real Grassmannians with arbitrary coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源