论文标题

使用张量特征值分解的超图形分区

Hypergraph Partitioning using Tensor Eigenvalue Decomposition

论文作者

Maurya, Deepak, Ravindran, Balaraman

论文摘要

由于在捕获实体之间超级野蛮的相互作用方面,HyperGraphs最近在机器学习社区中引起了越来越多的关注。在这项工作中,我们提出了一种新颖的方法来分区K-均匀的超图。大多数现有方法通过将超图减少到图表,然后应用标准图分区算法来工作。还原步骤限制了算法仅捕获一些加权成对相互作用,因此失去了有关原始超图的基本信息。我们通过利用基于张量的超图表来克服这个问题,这使我们能够捕获实际的超级野合相互作用。我们证明,降低的超图是张量收缩的特殊情况。我们将最小比率切割和归一化切割的概念从图形到超图表扩展,并显示出松弛的优化问题等效于张量特征值分解。与现有的还原方法不同,这种新颖的配方还使我们能够捕获切割超边缘的不同方法。我们提出了一种从光谱图理论启发的超图形分区算法,该算法可以适应这种超边界的概念。我们还根据其电导率而在均衡的超颗粒拉普拉斯张量的最小正征值上得出更紧密的上限,该值在分区算法中用于近似归一化切割。该方法的功效在简单的超图上数值证明。我们还对标准光谱分配算法的2均匀超图(图)显示了最小切割溶液的改进。

Hypergraphs have gained increasing attention in the machine learning community lately due to their superiority over graphs in capturing super-dyadic interactions among entities. In this work, we propose a novel approach for the partitioning of k-uniform hypergraphs. Most of the existing methods work by reducing the hypergraph to a graph followed by applying standard graph partitioning algorithms. The reduction step restricts the algorithms to capturing only some weighted pairwise interactions and hence loses essential information about the original hypergraph. We overcome this issue by utilizing the tensor-based representation of hypergraphs, which enables us to capture actual super-dyadic interactions. We prove that the hypergraph to graph reduction is a special case of tensor contraction. We extend the notion of minimum ratio-cut and normalized-cut from graphs to hypergraphs and show the relaxed optimization problem is equivalent to tensor eigenvalue decomposition. This novel formulation also enables us to capture different ways of cutting a hyperedge, unlike the existing reduction approaches. We propose a hypergraph partitioning algorithm inspired from spectral graph theory that can accommodate this notion of hyperedge cuts. We also derive a tighter upper bound on the minimum positive eigenvalue of even-order hypergraph Laplacian tensor in terms of its conductance, which is utilized in the partitioning algorithm to approximate the normalized cut. The efficacy of the proposed method is demonstrated numerically on simple hypergraphs. We also show improvement for the min-cut solution on 2-uniform hypergraphs (graphs) over the standard spectral partitioning algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源