论文标题

Nightvision:从红外观察产生夜间卫星图像

NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations

论文作者

Harder, Paula, Jones, William, Lguensat, Redouane, Bouabid, Shahine, Fulton, James, Quesada-Chacón, Dánell, Marcolongo, Aris, Stefanović, Sofija, Rao, Yuhan, Manshausen, Peter, Watson-Parris, Duncan

论文摘要

机器学习到卫星图像的应用程序最近的爆炸通常依赖于可见图像,因此夜间缺乏数据。可以通过使用可用的红外观测来产生可见图像来填补差距。这项工作介绍了如何通过使用基于U-NET的体系结构成功地应用深度学习来创建这些图像。所提出的方法显示出令人鼓舞的结果,在独立的测试集中达到了最高86%的结构相似性指数(SSIM),并提供了可令人信服的令人信服的输出图像,这是由红外观测产生的。

The recent explosion in applications of machine learning to satellite imagery often rely on visible images and therefore suffer from a lack of data during the night. The gap can be filled by employing available infra-red observations to generate visible images. This work presents how deep learning can be applied successfully to create those images by using U-Net based architectures. The proposed methods show promising results, achieving a structural similarity index (SSIM) up to 86\% on an independent test set and providing visually convincing output images, generated from infra-red observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源