论文标题
判别特征表示,并带有时空提示用于车辆重新识别
Discriminative Feature Representation with Spatio-temporal Cues for Vehicle Re-identification
论文作者
论文摘要
车辆重新识别(RE-ID)旨在从不同摄像机在广泛的道路网络上拍摄的画廊图像中发现和匹配目标车辆。这对于许多应用程序(例如安全监视和交通管理)至关重要。不同的车辆的出现非常相似,观点和照明条件的重大变化面临着对车辆重新ID的巨大挑战。传统的解决方案着重于设计全球视觉外观,而无需充分考虑车辆在不同图像中的时空关系。在本文中,我们提出了一种新型的判别特征表示,并带有时空线索(DFR-ST)用于媒介物重新ID。它能够通过涉及外观和时空信息来在嵌入空间中构建强大的功能。基于此多模式信息,所提出的DFR-ST构建了一个通过两流体系结构和时空度量的多层视觉表示的外观模型,以提供互补信息。两个公共数据集的实验结果表明,DFR-ST的表现优于最新方法,这些方法验证了所提出方法的有效性。
Vehicle re-identification (re-ID) aims to discover and match the target vehicles from a gallery image set taken by different cameras on a wide range of road networks. It is crucial for lots of applications such as security surveillance and traffic management. The remarkably similar appearances of distinct vehicles and the significant changes of viewpoints and illumination conditions take grand challenges to vehicle re-ID. Conventional solutions focus on designing global visual appearances without sufficient consideration of vehicles' spatiotamporal relationships in different images. In this paper, we propose a novel discriminative feature representation with spatiotemporal clues (DFR-ST) for vehicle re-ID. It is capable of building robust features in the embedding space by involving appearance and spatio-temporal information. Based on this multi-modal information, the proposed DFR-ST constructs an appearance model for a multi-grained visual representation by a two-stream architecture and a spatio-temporal metric to provide complementary information. Experimental results on two public datasets demonstrate DFR-ST outperforms the state-of-the-art methods, which validate the effectiveness of the proposed method.