论文标题
玻色纤维杂种系统中人工晶格中的激子 - 果龙和电子传输
Exciton-Polaritons in Artificial Lattices and Electron Transport in Bose-Fermi Hybrid Systems
论文作者
论文摘要
在本论文中,我们研究了许多粒子物理学的两个不同方面。在第一部分中,我们研究了不同人工晶格中微腔激元 - 果胶的Bose-Einstein凝结。 Bose-Einstein凝结是一种量子相变,它使系统能够宏观地占据其基态并自发发展。经常在微腔中进行研究,这些光腔是在特定波长处捕获光的光腔,激子是孔子 - 孔子是一种由量子井中激子和空腔光子之间的强耦合产生的一种准粒子。通过定期将不同模式的腔柱排列,可以实现不同的人造晶格结构。通过这种设置,我们应用了驱动的驱动性毛线 - 彼得维斯基方程,以通过更改泵送方案和诱捕势的设计来研究冷凝的不同后果。主题包括多数偶极凝结,激子 - 波利顿冷凝的相位选择和间歇性,平面带冷凝和激子 - 波利顿拓扑绝缘子。在本论文的第二部分中,我们关注杂交玻色纤维系统的电子散射特性。我们考虑一个由空间分离的二维电子气体层和通过库仑力相互作用的激气层组成的系统。我们研究了系统的电阻率与该层间电子相互作用的温度依赖性,并将结果与电子 - 音波相互作用进行了比较。
In this thesis, we study two different aspects of many-particle physics. In the first part, we study the Bose-Einstein condensation of microcavity exciton-polaritons in different artificial lattices. Bose-Einstein condensation is a quantum phase transition, which allows the system to macroscopically occupy its ground state and develop coherence spontaneously. Often studied in microcavities, which are optical cavities that trap light at specific wavelengths, exciton-polaritons are a kind of quasiparticle arising from the strong coupling between quantum well excitons and cavity photons. By periodically aligning cavity pillars in different patterns, one can achieve different artificial lattice structures. With this setup, we apply the driven-dissipative Gross-Pitaevskii equations to investigate the different consequences of the condensation by changing the pumping schemes and the design of the trapping potentials. Topics include multivalley condensation, phase selection and intermittency of exciton-polariton condensation, flat band condensation, and exciton-polariton topological insulators. In the second part of this thesis, we focus on the electron-scattering properties of a hybrid Bose-Fermi system. We consider a system consisting of a spatially separated two-dimensional electron gas layer and an exciton gas layer that interacts via Coulomb forces. We study the temperature dependence of the system's resistivity with this interlayer electron-exciton interaction and compare the results with the electron-phonon interaction.