论文标题

基于CNN的驱动块分区用于内部切片编码

CNN-based driving of block partitioning for intra slices encoding

论文作者

Galpin, Franck, Racapé, Fabien, Jaiswal, Sunil, Bordes, Philippe, Léannec, Fabrice Le, François, Edouard

论文摘要

本文提供了一种基于学习的编码器方法的技术概述,旨在优化下一代混合视频编码器,以在内部切片中驱动块分区。探索了基于卷积神经网络的编码方法,以通过系统和自动的过程进行部分替代基于经典的启发式编码器加速。该解决方案允许用一个参数在内部切片中控制复杂性和编码增益之间的权衡。该算法是在呼吁联合视频探索团队(JVET)的视频压缩的提案中提出的,其功能超出了HEVC。在所有内部配置中,对于允许的分割拓扑,$ \ times 2 $的加速速度是没有BD率损失的,或者超过$ \ times 4 $的加速度,BD率低于1 \%。

This paper provides a technical overview of a deep-learning-based encoder method aiming at optimizing next generation hybrid video encoders for driving the block partitioning in intra slices. An encoding approach based on Convolutional Neural Networks is explored to partly substitute classical heuristics-based encoder speed-ups by a systematic and automatic process. The solution allows controlling the trade-off between complexity and coding gains, in intra slices, with one single parameter. This algorithm was proposed at the Call for Proposals of the Joint Video Exploration Team (JVET) on video compression with capability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a speed-up of $\times 2$ is obtained without BD-rate loss, or a speed-up above $\times 4$ with a loss below 1\% in BD-rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源