论文标题
电压可调量子点阵列由图案化的Ge-Nanowire的金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物阵列(MOS)设备
Voltage tunable quantum dot array by patterned Ge-nanowire based metal-oxide-semiconductor (MOS) devices
论文作者
论文摘要
半导体量子点(QD)被视为广泛的高级和新兴技术的主要单元,包括电子,光电子,光伏和生物传感应用以及基于Q-Bits的量子量子信息处理的域。这样的QD适用于几种新型设备应用,用于将载体3维限制在创建离散量子状态的独特属性。但是,实践中这种QD的实现在其在阵列中的制造中表现出严重的挑战,并具有所需的可伸缩性和可重复性以及在室温下对量子状态的控制。在这种情况下,当前的工作报告了基于高度缩放的GE纳米线(半径〜25 nm)的垂直金属氧化物 - 氧化物 - 轴导剂器件的制造,该设备可以在室温下作为电压调谐量子点(在室温下)操作。这种纳米线中的电子经历了径向方向上的几何限制,而可以通过调整施加的偏置以操纵量子状态来轴向限制它们。从相对较低的频率下(200 kHz)中的室温电容 - 电压 - 电压 - 电容(C-V)特性中的阶梯响应(200 kHz)中,已经证实了电子的这种量子限制。已经观察到的每个步骤都包含占据约6个电子电荷的量化状态的卷积。当前的工作中,通过基于非平衡绿色功能(NEGF)形式主义对设备传输属性进行理论对设备传输属性进行理论上建模,从而在当前的工作中分析了此类载体限制的细节。
Semiconductor quantum dots (QDs) are being regarded as the primary unit for a wide range of advanced and emerging technologies including electronics, optoelectronics, photovoltaics and biosensing applications as well as the domain of q-bits based quantum information processing. Such QDs are suitable for several novel device applications for their unique property of confining carriers 3-dimensionally creating discrete quantum states. However, the realization of such QDs in practice exhibits serious challenge regarding their fabrication in array with desired scalability and repeatability as well as control over the quantum states at room temperature. In this context, the current work reports the fabrication of an array of highly scaled Ge-nanowire (radius ~25 nm) based vertical metal-oxide-semiconductor devices that can operate as voltage tunable quantum dots at room temperature. The electrons in such nanowire experience a geometrical confinement in the radial direction, whereas, they can be confined axially by tuning the applied bias in order to manipulate the quantum states. Such quantum confinement of electrons has been confirmed from the step-like responses in the room temperature capacitance-voltage (C-V) characteristics at relatively low frequency (200 kHz). Each of such steps has observed to encompass convolution of the quantized states occupying ~6 electronic charges. The details of such carrier confinement are analyzed in the current work by theoretically modeling the device transport properties based on non-equilibrium Green's function (NEGF) formalism.