论文标题
将来自多个传感器的握力信号相关联,突出显示复杂的任务用户系统中的预智能控制策略
Correlating grip force signals from multiple sensors highlights prehensile control strategies in a complex task-user system
论文作者
论文摘要
目前,具有传输功能的可穿戴传感器系统用于锻炼活动和其他性能数据的生物识别筛查。这样的技术通常是无线的,可以使信号无创监视能够实时跟踪和跟踪用户行为。示例包括相对于手指和手指运动的信号或单个握力力数据反映的力控制。如这里所示,这些信号直接转化为任务,技巧和特定的特定指示性,与非主导手,手指和手掌中不同测量基因座的握力剖面。本研究汲取了从多个空间位置记录的数千个此类传感器数据。分析了高度精通的左手实验,右手主导的手训练用户的单个握力剖面,并分析了右手训练的用户,右手新手进行了图像指导,机器人辅助精确任务,并分析了主导者或非主导手。逐步的统计方法遵循Tukeys侦探工作原理,以与人脑中的体感受感染现场组织有关的显式功能假设为指导。相关性分析以人的产品力矩来揭示技能在单个握力概况中的协变模式的特定差异。这些可以在功能上映射到从全球到局部编码原则,这些编码原理控制控制力量控制及其具有特定任务专业知识的优化。提出了对复杂任务用户系统中的抓地力和性能培训的实时监控的影响。
Wearable sensor systems with transmitting capabilities are currently employed for the biometric screening of exercise activities and other performance data. Such technology is generally wireless and enables the noninvasive monitoring of signals to track and trace user behaviors in real time. Examples include signals relative to hand and finger movements or force control reflected by individual grip force data. As will be shown here, these signals directly translate into task, skill, and hand specific, dominant versus non dominant hand, grip force profiles for different measurement loci in the fingers and palm of the hand. The present study draws from thousands of such sensor data recorded from multiple spatial locations. The individual grip force profiles of a highly proficient left handed exper, a right handed dominant hand trained user, and a right handed novice performing an image guided, robot assisted precision task with the dominant or the non dominant hand are analyzed. The step by step statistical approach follows Tukeys detective work principle, guided by explicit functional assumptions relating to somatosensory receptive field organization in the human brain. Correlation analyses in terms of Person Product Moments reveal skill specific differences in covariation patterns in the individual grip force profiles. These can be functionally mapped to from global to local coding principles in the brain networks that govern grip force control and its optimization with a specific task expertise. Implications for the real time monitoring of grip forces and performance training in complex task user systems are brought forward.