论文标题
$ l^2 $ pseudoDiffertential operators在带有末端的歧管上
$L^2$ boundedness of pseudodifferential operators on manifolds with ends
论文作者
论文摘要
我们研究了伪差算子在$ l^2 $ space上的属性,包括渐近的圆锥形或双曲线末端。我们的假差异操作员是规范量化的概括,该量子自然出现在弯曲空间上的量子力学中。我们证明了我们的伪差操作员的calderón-vaillancourt型定理,并讨论了椭圆形差分运算符的参数构造的末端。
We investigate properties of pseudodifferential operators on $L^2$ space on manifold with ends including asymptotically conical or hyperbolic ends. Our pseudodifferential operators are a generalization of the canonical quantization which naturally appears in the quantum mechanics on curved spaces. We prove a Calderón-Vaillancourt type theorem for our pseudodifferential operators and discuss a construction of parametrix of elliptic differential operators on manifolds with ends.