论文标题

强大的种植集团假设及其后果

The Strongish Planted Clique Hypothesis and Its Consequences

论文作者

Manurangsi, Pasin, Rubinstein, Aviad, Schramm, Tselil

论文摘要

我们制定了一个新的硬度假设,即强烈的种植集团假设(SPCH),该假设(SPCH)假定,任何种植集团的算法都必须在时间$ n^{ω(\ log {n})} $(因此,$ n^{o(log log n)$的最佳运行时间$ n^{ω(\ log {n})} $是最佳的。 我们提供了新假设的两组应用。 First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter $k$: Densest $k$-Subgraph, Smallest $k$-Edge Subgraph, Densest $k$-Subhypergraph, Steiner $k$-Forest, and Directed Steiner Network with $k$ terminal pairs.例如,我们在SPCH下表明,没有多项式时间算法可以实现$ O(k)$ - 近似值$ k $ -subgraph。这种不Xibibibibibibibio的比率在先前的最佳$ k^{o(1)} $因子(Chalermsook等人,FOCS 2017)上提高。此外,我们的下限甚至与固定参数可处理算法有关,该算法和参数$ k $。 我们的第二个应用集中在图模式检测的复杂性上。对于诱导的和非诱导的图形模式检测,我们在SPCH下证明了硬度结果,这改善了(Dalirroyfard等,Stoc,2019年)在指数时间假设下获得的运行时间下限。

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time $n^{Ω(\log{n})}$ (so that the state-of-the-art running time of $n^{O(\log n)}$ is optimal up to a constant in the exponent). We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter $k$: Densest $k$-Subgraph, Smallest $k$-Edge Subgraph, Densest $k$-Subhypergraph, Steiner $k$-Forest, and Directed Steiner Network with $k$ terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves $o(k)$-approximation for Densest $k$-Subgraph. This inapproximability ratio improves upon the previous best $k^{o(1)}$ factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter $k$. Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, which improves the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源