论文标题

从大规模可穿戴数据中学习可通用的生理表现

Learning Generalizable Physiological Representations from Large-scale Wearable Data

论文作者

Spathis, Dimitris, Perez-Pozuelo, Ignacio, Brage, Soren, Wareham, Nicholas J., Mascolo, Cecilia

论文摘要

迄今为止,对配备传感器的移动设备的研究主要集中于纯监督的人类活动识别任务(步行,跑步等),这表明在推断低级信号(例如加速度)的高级健康结果方面取得了有限的成功。在这里,我们使用没有语义标签的活动和心率(HR)信号提出了一种新颖的自我监督表示方法(HR)信号。通过深层神经网络,我们将人力资源响应设置为活动数据的监督信号,利用其潜在的生理关系。 我们在最大的自由活动组合数据集(包括超过280,000个小时的腕部加速度计和可穿戴的ECG数据)中评估我们的模型,并表明所得的嵌入可以通过与线性分类器进行转移学习,从而在各种下游任务中概括,从而捕获有意义的有意义的,个性化的,个性化的信息。例如,它们可用于预测与个人的健康,健身和人口统计学特征相关的(高于70个AUC)变量,表现优于无监督的自动编码器和常见的生物标志物。总体而言,我们提出了第一种多模式自学方法,用于行为和生理数据,对大规模的健康和生活方式监测有影响。

To date, research on sensor-equipped mobile devices has primarily focused on the purely supervised task of human activity recognition (walking, running, etc), demonstrating limited success in inferring high-level health outcomes from low-level signals, such as acceleration. Here, we present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels. With a deep neural network, we set HR responses as the supervisory signal for the activity data, leveraging their underlying physiological relationship. We evaluate our model in the largest free-living combined-sensing dataset (comprising more than 280,000 hours of wrist accelerometer & wearable ECG data) and show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers, capturing physiologically meaningful, personalized information. For instance, they can be used to predict (higher than 70 AUC) variables associated with individuals' health, fitness and demographic characteristics, outperforming unsupervised autoencoders and common bio-markers. Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源