论文标题
广义的Gelfand-Yaglom公式,用于离散的量子机械系统
Generalized Gelfand-Yaglom Formula for a Discretized Quantum Mechanic System
论文作者
论文摘要
Gelfand-Yaglom公式将差分运算符的正则决定因素与初始值问题的解决方案联系起来。在这里,我们为在离散和持续设置中具有拉格朗日边界条件的哈密顿系统开发了广义的Gelfand-Yaglom公式。稍后,我们分析了离散的汉密尔顿 - 雅各比操作员的收敛性,并提出了决定因素的晶格正则化。
The Gelfand-Yaglom formula relates the regularized determinant of a differential operator to the solution of an initial value problem. Here we develop a generalized Gelfand-Yaglom formula for a Hamiltonian system with Lagrangian boundary conditions in the discrete and continuous settings. Later we analyze the convergence of the discretized Hamilton-Jacobi operator and propose a lattice regularization for the determinant.