论文标题

通过多路径框架预测,强大的无监督视频异常检测

Robust Unsupervised Video Anomaly Detection by Multi-Path Frame Prediction

论文作者

Wang, Xuanzhao, Che, Zhengping, Jiang, Bo, Xiao, Ning, Yang, Ke, Tang, Jian, Ye, Jieping, Wang, Jingyu, Qi, Qi

论文摘要

视频异常检测通常用于许多应用程序,例如安全性监视,并且非常具有挑战性。最近的大多数视频异常检测方法都使用了深层重建模型,但是由于实践中正常和异常视频框架之间的重建误差差异不足,因此它们的性能通常是次优的。同时,基于框架预测的异常检测方法已显示出有希望的性能。在本文中,我们通过框架预测提出了一种新颖且强大的无监督视频异常检测方法,并具有适当的设计,这更符合监视视频的特征。所提出的方法配备了基于多路径的基于Convru的框架预测网络,该网络可以更好地处理不同尺度的语义信息对象和区域,并捕获正常视频中的时空依赖性。在训练过程中引入了噪声耐受性损失,以减轻背景噪声引起的干扰。在Cuhk Avenue,Shanghaitech校园和UCSD行人数据集上进行了广泛的实验,结果表明,我们所提出的方法的表现优于现有的最新方法。值得注意的是,我们提出的方法在CUHK Avenue数据集中获得了帧级AUROC分数为88.3%。

Video anomaly detection is commonly used in many applications such as security surveillance and is very challenging.A majority of recent video anomaly detection approaches utilize deep reconstruction models, but their performance is often suboptimal because of insufficient reconstruction error differences between normal and abnormal video frames in practice. Meanwhile, frame prediction-based anomaly detection methods have shown promising performance. In this paper, we propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design which is more in line with the characteristics of surveillance videos. The proposed method is equipped with a multi-path ConvGRU-based frame prediction network that can better handle semantically informative objects and areas of different scales and capture spatial-temporal dependencies in normal videos. A noise tolerance loss is introduced during training to mitigate the interference caused by background noise. Extensive experiments have been conducted on the CUHK Avenue, ShanghaiTech Campus, and UCSD Pedestrian datasets, and the results show that our proposed method outperforms existing state-of-the-art approaches. Remarkably, our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源