论文标题
用于准确映射和组成操作员的耐力空间
Hardy spaces for quasiregular mappings and composition operators
论文作者
论文摘要
我们为飞机上的Quasiregular映射定义了Hardy Spaces $ \ MATHCAL {H}^p $,并表明,对于这些特定类别的这些映射类别,在这些分析映射的经典环境中仍然存在许多经典属性。当符号为准文字时,可以用组成算子来表征这类特殊的Quasiregular映射。 Carleson措施与强壮空间之间的关系在讨论中起着重要作用。该程序是由Astala和Koskela在2011年的纸张$ \ Mathcal {h}^p $ - 准式映射的理论中启动和开发的。
We define Hardy spaces $\mathcal{H}^p$ for quasiregular mappings in the plane, and show that for a particular class of these mappings many of the classical properties that hold in the classical setting of analytic mappings still hold. This particular class of quasiregular mappings can be characterised in terms of composition operators when the symbol is quasiconformal. Relations between Carleson measures and Hardy spaces play an important role in the discussion. This program was initiated and developed for Hardy spaces of quasiconformal mappings by Astala and Koskela in 2011 in their paper $\mathcal{H}^p$-theory for Quasiconformal Mappings.