论文标题

pcednet:一个轻巧的神经网络,用于3D点云中快速和交互式边缘检测

PCEDNet : A Lightweight Neural Network for Fast and Interactive Edge Detection in 3D Point Clouds

论文作者

Himeur, Chems-Eddine, Lejemble, Thibault, Pellegrini, Thomas, Paulin, Mathias, Barthe, Loic, Mellado, Nicolas

论文摘要

近年来,卷积神经网络(CNN)已被证明是处理点云的有效分析工具,例如重建,分割和分类。在本文中,我们关注点云中边缘的分类,其中描述了边缘及其周围环境。我们提出了一个新的参数化,为每个点增加了一组差分信息,以在其周围形状以不同的尺度重建。这些参数存储在刻度空间矩阵(SSM)中,提供了一个合适的信息,从中可以从中从中可以从中学习边缘的描述,并使用它在获得的点云中有效地检测它们。在成功地在SSM上应用多尺度的CNN以进行边缘及其附近的有效分类之后,我们提出了一种新的轻型神经网络体系结构,在学习时间,处理时间和分类功能方面优于CNN。我们的体系结构紧凑,需要小型学习集,非常快地训练并在几秒钟内对数百万分进行了分类。

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for reconstruction, segmentation and classification. In this paper, we focus on the classification of edges in point clouds, where both edges and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM), provide a well suited information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood, we propose a new lightweight neural network architecture outperforming the CNN in learning time, processing time and classification capabilities. Our architecture is compact, requires small learning sets, is very fast to train and classifies millions of points in seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源