论文标题

在一维系统中的本地化和离域,并具有翻译不变的跳跃

Localization and delocalization in one-dimensional systems with translation-invariant hopping

论文作者

Sepehrinia, Reza

论文摘要

我们提出了安德森本地化的理论,并在一个具有翻译不变的跳跃的一维晶格上。我们通过分析计算发现,在单个传播通道方案中,任意有限范围跳跃的定位长度。然后,通过检查定位长度的融合,在无限跳跃范围的极限下,我们重新审视了该模型中定位标准的问题,并调查了可以违反其的条件。我们的结果表明,通过调整远距离跳跃来进行离域状态的可能性。

We present a theory of Anderson localization on a one-dimensional lattice with translation-invariant hopping. We find by analytical calculation, the localization length for arbitrary finite-range hopping in the single propagating channel regime. Then by examining the convergence of the localization length, in the limit of infinite hopping range, we revisit the problem of localization criteria in this model and investigate the conditions under which it can be violated. Our results reveal possibilities of having delocalized states by tuning the long-range hopping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源