论文标题
自适应伯恩斯坦·科帕拉斯(Bernstein Copulas)和风险管理
Adaptive Bernstein Copulas and Risk Management
论文作者
论文摘要
当下面的边际网格大小小于观测值时,我们提出了一种在任意维度上具有可允许的离散骨骼的伯恩斯坦·科普拉斯(Bernstein Copulas)的建设性方法。这防止了估计的依赖模型的过度拟合,并减少了伯恩斯坦·库普拉斯(Bernstein Copulas)的模拟工作。在一项案例研究中,我们比较了伯恩斯坦和高斯Copulas W.R.T.的不同方法。风险管理中的风险度量估计。
We present a constructive approach to Bernstein copulas with an admissible discrete skeleton in arbitrary dimensions when the underlying marginal grid sizes are smaller than the number of observations. This prevents an overfitting of the estimated dependence model and reduces the simulation effort for Bernstein copulas a lot. In a case study, we compare different approaches of Bernstein and Gaussian copulas w.r.t. the estimation of risk measures in risk management.