论文标题

机器学习预测主动命名

Machine Learning Forecasting of Active Nematics

论文作者

Zhou, Zhengyang, Joshi, Chaitanya, Liu, Ruoshi, Norton, Michael M., Lemma, Linnea, Dogic, Zvonimir, Hagan, Michael F., Fraden, Seth, Hong, Pengyu

论文摘要

主动命名化是一类远离平衡材料,其特征在于局部产生力,各向异性构成的局部定向顺序。预测主动命名动力学动力学的传统方法依赖于流体动力学模型,该模型准确地描述了理想化的流量和许多稳态特性,但并未捕获实验性主动命名的某些详细动力学。我们已经开发了一种深度学习方法,该方法使用卷积长期 - 记忆(ConvlstM)算法自动学习和预测主动nematics的动态。我们证明了我们纯粹由数据驱动的方法对延伸微管束的2D无限性活性nematics的实验,以及来自活性nematics的数值模拟的数据。

Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源