论文标题
机器学习预测主动命名
Machine Learning Forecasting of Active Nematics
论文作者
论文摘要
主动命名化是一类远离平衡材料,其特征在于局部产生力,各向异性构成的局部定向顺序。预测主动命名动力学动力学的传统方法依赖于流体动力学模型,该模型准确地描述了理想化的流量和许多稳态特性,但并未捕获实验性主动命名的某些详细动力学。我们已经开发了一种深度学习方法,该方法使用卷积长期 - 记忆(ConvlstM)算法自动学习和预测主动nematics的动态。我们证明了我们纯粹由数据驱动的方法对延伸微管束的2D无限性活性nematics的实验,以及来自活性nematics的数值模拟的数据。
Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.