论文标题
在极端环境中无监督的深度持续持续的单眼视觉效果和深度估计
Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
论文作者
论文摘要
近年来,无监督的深度学习方法已引起人们对估计未标记单眼图像序列的深度和视觉探光(VO)的极大关注。但是,由于感知性降解,阻塞和快速动作,它们的性能在充满挑战的环境中受到限制。此外,现有的无监督方法遭受跨帧的规模一致性约束的影响,这导致VO估计器无法通过长序列提供持续的轨迹。在这项研究中,我们提出了一个无监督的单眼深VO框架,该框架可预测未经标记的RGB图像序列的六度姿势摄像头运动和场景的深度图。我们在DARPA地下挑战期间收集的具有挑战性的数据集对拟议框架进行了详细的定量评估; b)基准Kitti和CityScapes数据集。所提出的方法的表现优于传统和最先进的无监督的深VO方法,为姿势估计和深度恢复提供了更好的结果。提出的方法是参加DARPA地下挑战赛的Costar团队使用的解决方案的一部分。
In recent years, unsupervised deep learning approaches have received significant attention to estimate the depth and visual odometry (VO) from unlabelled monocular image sequences. However, their performance is limited in challenging environments due to perceptual degradation, occlusions and rapid motions. Moreover, the existing unsupervised methods suffer from the lack of scale-consistency constraints across frames, which causes that the VO estimators fail to provide persistent trajectories over long sequences. In this study, we propose an unsupervised monocular deep VO framework that predicts six-degrees-of-freedom pose camera motion and depth map of the scene from unlabelled RGB image sequences. We provide detailed quantitative and qualitative evaluations of the proposed framework on a) a challenging dataset collected during the DARPA Subterranean challenge; and b) the benchmark KITTI and Cityscapes datasets. The proposed approach outperforms both traditional and state-of-the-art unsupervised deep VO methods providing better results for both pose estimation and depth recovery. The presented approach is part of the solution used by the COSTAR team participating at the DARPA Subterranean Challenge.