论文标题
在分段连续功能中学习子图案
Learning Sub-Patterns in Piecewise Continuous Functions
论文作者
论文摘要
大多数随机梯度下降算法都可以优化在其参数中可亚差异的神经网络。但是,这意味着神经网络的激活函数必须表现出一定程度的连续性,这将神经网络模型的均匀近似能力限制为连续功能。本文重点介绍了不连续性由不同的子图案产生的情况,每个子图案都定义在输入空间的不同部分。我们提出了一个可通过脱钩的两步过程训练的新的不连续的深神经网络模型,该模型避免了通过网络唯一且战略性地放置的,不连续的单元传递梯度更新。我们在界面连续函数的空间中为我们的体系结构提供了近似保证,并且在我们本文中引入的分段连续函数的空间中提供了通用近似保证。我们为我们的不连续的深度学习模型提供了一种新颖的半监督两步训练程序,该模型是根据其结构量身定制的,我们为其有效性提供了理论上的支持。我们的模型的性能并通过建议程序进行了培训,可以在现实世界中的财务数据集和合成数据集上进行实验评估。
Most stochastic gradient descent algorithms can optimize neural networks that are sub-differentiable in their parameters; however, this implies that the neural network's activation function must exhibit a degree of continuity which limits the neural network model's uniform approximation capacity to continuous functions. This paper focuses on the case where the discontinuities arise from distinct sub-patterns, each defined on different parts of the input space. We propose a new discontinuous deep neural network model trainable via a decoupled two-step procedure that avoids passing gradient updates through the network's only and strategically placed, discontinuous unit. We provide approximation guarantees for our architecture in the space of bounded continuous functions and universal approximation guarantees in the space of piecewise continuous functions which we introduced herein. We present a novel semi-supervised two-step training procedure for our discontinuous deep learning model, tailored to its structure, and we provide theoretical support for its effectiveness. The performance of our model and trained with the propose procedure is evaluated experimentally on both real-world financial datasets and synthetic datasets.