论文标题
消失的粘度限制了聚合物流的Fene Dumbbell模型
Vanishing viscosity limit to the FENE dumbbell model of polymeric flows
论文作者
论文摘要
在本文中,我们主要研究有限的可扩展非线性弹性(Fene)哑铃模型的强溶液的无关极限。借助Littlewood-Paley理论,我们首先获得了用BESOV空间粘度的Fene Dumbbell模型解决方案的均匀估计。此外,我们表明数据到解决方案图是连续的。最后,我们证明了Fene Dumbbell模型的强溶液将带有Fokker-Planck方程的Euler System夫妇收敛。此外,还获得了Lebesgue空间中的收敛速率。
In this paper we mainly investigate the inviscid limit for the strong solutions of the finite extensible nonlinear elastic (FENE) dumbbell model. By virtue of the Littlewood-Paley theory, we first obtain a uniform estimate for the solution to the FENE dumbbell model with viscosity in Besov spaces. Moreover, we show that the data-to-solution map is continuous. Finally, we prove that the strong solution of the FENE dumbbell model converges to a Euler system couple with a Fokker-Planck equation. Furthermore, convergence rates in Lebesgue spaces are obtained also.