论文标题
非线性Nernst效应的量子动力学理论
Quantum Kinetic Theory of Nonlinear Nernst Effect
论文作者
论文摘要
长期以来,我们一直在寻求浆果曲率如何膨胀材料破坏时间反转对称性的运输特性。在时间反转对称材料中,线性状态下将没有浆果曲率诱导的热电电流。但是,非线性霍尔电流可以在非磁性和非中心对称材料中显示,其中浆果曲率偶极子起着重要作用。大多数研究是由半古典玻尔兹曼方程开发的。在这里,我们显示了非线性Nernst效应的量子动力学理论,并引入了一种新型的浆果曲率偶极子:热电浆果曲率偶极子。这种新的浆果曲率偶极子也将在时间反转不变晶体中诱导非线性状态的热电传输。我们还将将我们的理论应用于用倾斜的狄拉克锥上拓扑结晶绝缘子。
For a long period of time, we have been seeking how Berry curvature influnces the transport properties in materials breaking time-reversal symmetry. In time-reversal symmetric material, there will be no thermoelectric current induced by Berry curvature in linear regime. However, the nonlinear Hall current can be shown in non-magnetic and non-centrosymmetric materials, where Berry curvature dipole plays an important role. Most studies are developed from semi-classical Boltzmann equation. Here we show the quantum kinetic theory for nonlinear Nernst effect and introduce a new type of Berry curvature dipole: thermoelectric Berry curvature dipole. This new Berry curvature dipole will also induce the thermoelectric transport in nonlinear regime even in time-reversal invariant crystals. We will also apply our theory to topological crystalline insulator with tilted Dirac cone.