论文标题
洞悉纳米诺兹重力波背景中各向异性的搜索
Insights into searches for anisotropies in the nanohertz gravitational-wave background
论文作者
论文摘要
在接下来的几年中,Pulsar定时阵列(PTA)将定位以检测可能是通过收集灵感的超质量黑洞二进制物产生的随机重力波背景(GWB),并有可能限制一些外来的物理学。到目前为止,大多数PULSAR时正时数据分析都集中在GWB的单极管上,假设它是完全各向同性的。自然的下一步是在GWB中搜索各向异性。在本文中,我们使用最近开发的PTA Fisher矩阵来洞悉GWB各向异性的最佳搜索策略。为了具体,我们使用其脉冲星的逼真的噪声特征将结果应用于EPTA数据。我们投影了GWB的可检测性,该GWB的角度依赖性被认为是预定图的线性组合,例如球形谐波或粗像素。我们发现,GWB单极总是在统计上与这些地图相关,这意味着在同时搜索各向异性时,对单极的敏感性丧失。然后,我们得出了PTA最敏感的GWB强度的角度分布,并说明了如何使用这些“主地图”来近似重建GWB的角度依赖性。由于主地图既不是各向异性的,也不与单极管不相关,因此我们还开发了一个常见的标准,可以在GWB中专门搜索各向异性,而无需任何有关其角度分布的知识。最后,我们展示了如何通过我们的Fisher形式主义来恢复现有的EPTA结果,并澄清其含义。此处介绍的工具对于指导和优化对PULSAR定时数据的计算要求分析非常有价值。
Within the next several years pulsar timing arrays (PTAs) are positioned to detect the stochastic gravitational-wave background (GWB) likely produced by the collection of inspiralling super-massive black holes binaries, and potentially constrain some exotic physics. So far most of the pulsar timing data analysis has focused on the monopole of the GWB, assuming it is perfectly isotropic. The natural next step is to search for anisotropies in the GWB. In this paper, we use the recently developed PTA Fisher matrix to gain insights into optimal search strategies for GWB anisotropies. For concreteness, we apply our results to EPTA data, using realistic noise characteristics of its pulsars. We project the detectability of a GWB whose angular dependence is assumed to be a linear combination of predetermined maps, such as spherical harmonics or coarse pixels. We find that the GWB monopole is always statistically correlated with these maps, implying a loss of sensitivity to the monopole when searching simultaneously for anisotropies. We then derive the angular distributions of the GWB intensity to which a PTA is most sensitive, and illustrate how one may use these "principal maps" to approximately reconstruct the angular dependence of the GWB. Since the principal maps are neither perfectly anisotropic nor uncorrelated with the monopole, we also develop a frequentist criterion to specifically search for anisotropies in the GWB without any prior knowledge about their angular distribution. Lastly, we show how to recover existing EPTA results with our Fisher formalism, and clarify their meaning. The tools presented here will be valuable in guiding and optimizing the computationally demanding analyses of pulsar timing data.