论文标题

双子体类别的纸图

Sheet diagrams for bimonoidal categories

论文作者

Comfort, Cole, Delpeuch, Antonin, Hedges, Jules

论文摘要

双子体类别(也称为钻机类别)是具有两个单素结构的类别,其中一种分布在另一个。我们正式定义了表图,这是Staton非正式介绍的双子体类别的图形演算。纸图是在分支表面上绘制的弦图,该图本身就是挤出的弦图。我们的主要结果是图形骨化的通常形式的合理性和完整定理:我们在签名上表明,表图构成了自由的双子体类别。

Bimonoidal categories (also known as rig categories) are categories with two monoidal structures, one of which distributes over the other. We formally define sheet diagrams, a graphical calculus for bimonoidal categories that was informally introduced by Staton. Sheet diagrams are string diagrams drawn on a branching surface, which is itself an extruded string diagram. Our main result is a soundness and completeness theorem of the usual form for graphical calculi: we show that sheet diagrams form the free bimonoidal category on a signature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源