论文标题
使用主组件分析和特征重要性解释功能数据的神经网络预测
Explaining Neural Network Predictions for Functional Data Using Principal Component Analysis and Feature Importance
论文作者
论文摘要
从爆炸视频中提取的光谱时空特征为识别相应爆炸装置的特征提供了信息。目前,使用启发式算法和直接主题专家审查进行了识别。可以通过使用机器学习来提高预测性能,但是该应用程序可以实现高结果国家安全决策,因此,提供高准确性,而且清楚地解释了对模型获得信心的明确解释。尽管已经为开发机器学习模型的解释性方法做出了许多工作,但并没有很多工作集中于具有功能数据形式的输入变量,例如光谱频谱签名。我们提出了一个使用功能数据来解释机器学习模型的过程,该功能数据可以说明数据功能性质。我们的方法利用功能主成分分析(FPCA)和置换特征重要性(PFI)。 FPCA用于转换功能以创建不相关的功能主组件(FPC)。使用FPC作为输入对模型进行训练,并应用PFI来识别对预测模型重要的FPC。可视化用于解释FPC所解释的可变性,而FPC被PFI发现很重要,以确定对预测很重要的功能的各个方面。我们通过解释适合爆炸光谱频谱符号的神经网络来预测爆炸装置特征的神经网络来演示该技术。
Optical spectral-temporal signatures extracted from videos of explosions provide information for identifying characteristics of the corresponding explosive devices. Currently, the identification is done using heuristic algorithms and direct subject matter expert review. An improvement in predictive performance may be obtained by using machine learning, but this application lends itself to high consequence national security decisions, so it is not only important to provide high accuracy but clear explanations for the predictions to garner confidence in the model. While much work has been done to develop explainability methods for machine learning models, not much of the work focuses on situations with input variables of the form of functional data such optical spectral-temporal signatures. We propose a procedure for explaining machine learning models fit using functional data that accounts for the functional nature the data. Our approach makes use of functional principal component analysis (fPCA) and permutation feature importance (PFI). fPCA is used to transform the functions to create uncorrelated functional principal components (fPCs). The model is trained using the fPCs as inputs, and PFI is applied to identify the fPCs important to the model for prediction. Visualizations are used to interpret the variability explained by the fPCs that are found to be important by PFI to determine the aspects of the functions that are important for prediction. We demonstrate the technique by explaining neural networks fit to explosion optical spectral-temporal signatures for predicting characteristics of the explosive devices.