论文标题
基于预测的GNSS欺骗攻击检测自动驾驶汽车
Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles
论文作者
论文摘要
全球导航卫星系统(GNSS)使用卫星和无线电通信为自动驾驶汽车(AVS)提供定位,导航和定时(PNT)服务。由于缺乏加密,粗获取(C/A)代码的开放式访问以及信号的低强度,GNSS很容易受到欺骗攻击,从而损害了AV的导航能力。欺骗攻击很难作为欺骗者(执行欺骗攻击的攻击者)可以模仿GNSS信号并将位置不准确的位置坐标传输到AV。在这项研究中,我们使用了长期记忆(LSTM)模型(一种经常性的神经网络模型)开发了一种基于预测的欺骗攻击检测策略。 LSTM模型用于预测自动驾驶汽车的两个连续位置之间传播的距离。为了开发LSTM预测模型,我们已经使用了公开可用的现实世界逗号2K19驾驶数据集。训练数据集包含从受控区域网络(CAN),GNSS和惯性测量单元(IMU)传感器中提取的不同特征(即,加速度,方向盘角,速度和距离)。基于当前位置和自动驾驶汽车的直接将来位置之间的预测距离,使用GNSS设备的定位误差以及与当前位置和直接将来的位置之间行驶的距离相关的距离,建立了阈值。我们的分析表明,基于预测的欺骗攻击检测策略可以实时成功检测攻击。
Global Navigation Satellite System (GNSS) provides Positioning, Navigation, and Timing (PNT) services for autonomous vehicles (AVs) using satellites and radio communications. Due to the lack of encryption, open-access of the coarse acquisition (C/A) codes, and low strength of the signal, GNSS is vulnerable to spoofing attacks compromising the navigational capability of the AV. A spoofed attack is difficult to detect as a spoofer (attacker who performs spoofing attack) can mimic the GNSS signal and transmit inaccurate location coordinates to an AV. In this study, we have developed a prediction-based spoofing attack detection strategy using the long short-term memory (LSTM) model, a recurrent neural network model. The LSTM model is used to predict the distance traveled between two consecutive locations of an autonomous vehicle. In order to develop the LSTM prediction model, we have used a publicly available real-world comma2k19 driving dataset. The training dataset contains different features (i.e., acceleration, steering wheel angle, speed, and distance traveled between two consecutive locations) extracted from the controlled area network (CAN), GNSS, and inertial measurement unit (IMU) sensors of AVs. Based on the predicted distance traveled between the current location and the immediate future location of an autonomous vehicle, a threshold value is established using the positioning error of the GNSS device and prediction error (i.e., maximum absolute error) related to distance traveled between the current location and the immediate future location. Our analysis revealed that the prediction-based spoofed attack detection strategy can successfully detect the attack in real-time.